

Improved flux Prototypes for N₂O emission from Agriculture

A strategy to reduce N₂O emissions from agriculture

Giorgio Virgili – WEST Systems

MARRAKECH COP22 CMP12 CMA1 UN CLIMATE CHANGE CONFERENCE 2016 ספֿנסر الأסס ווסتحدة لتغير المناخ

LIFE11 ENV/IT/302 - IPNOA PROJECT

The project assumptions:

- Tuscany needs to reduce its GHG emissions by 20% in 2020 vs. 1990
- Co-responsibility of agriculture:
 - The agriculture sector accounts for about 7% of national GHG emissions, but
 - the 50-70% of N₂O emissions in Italy come from the agricultural sector, mainly as a result of nitrogen fertilization and consequent nitrification and denitrification processes mediated by bacteria in the soil.
- Best agricultural practices: in order to facilitate the containment of GHG emissions it is necessary to promote sustainable cropping systems and agricultural practices

The project objectives:

- 1. Find a strategy to reduce N₂O emissions from agriculture in Tuscany without affecting the crop yield
- 2. Development of innovative instrumentation to improve the monitoring of N₂O emissions from soil;
- 3. Identification of the best agricultural practices for N2O mitigation through field trial and monitoring on numerous crops
- 4. Results upscaling to Regional Level
- 5. Promotion of Best Practices application in Tuscan agriculture.

WEST Systems supplies instrumentation and services worldwide for the monitoring of diffuse degassing emissions (CO₂, CH₄, H₂S, hydrocarbons and also **nitrous oxide...**);

The **Institute of Life Sciences, Scuola Superiore Sant'Anna**, carries out research in the field of plant biology, energy- and food-related crops, agro-biodiversity and agro-ecosystem sustainability.

The REGIONE TOSCANA is the Regional Government of Tuscany : It is an autonomous entity with legislative powers.

INRA: ECOSYS Joint Research Unit INRA / AgroParisTech aims to treat in an integrated way the functioning of agro-ecosystems and their relationship with the environment.

LIFE11 ENV/IT/302 - IPNOA PROJECT

LIFE + Environmental Policy and Governance

- Supporting projects that contribute to the development of policies, technologies, methods and innovative tools.
- 607 projects submitted in 2011, 113 of them financed (23 in Italy)

LIFE 11 ENV/IT/302 IPNOA: Improved Flux Prototypes for N₂O emissions reduction in Agriculture

Period	June 2012 – November 2016
Total Budget	€ 2.058.612
EC Contribution:	€ 995.648

The project phases:

1 - Inventory of cropping systems and setup of trials

Factors that affect N₂O emissions from soil

Figure 3: The processes that regulate the production of N₂O in the soil.

1 - Inventory of cropping systems and setup of trials

Improved flux Prototypes for N₂O emission from Agriculture

						emission from Agriculture
	CROPS	Tillage level	Nitrogen level (kg di N ha-1)	Treatment of residues	Irrigation levels	
	WHEAT	ploughing (30 cm) minimum tillage (10 cm)	N ₀ =0 N ₁ =110 N ₂ =170	removed		
	MAIZE ¹	ploughing (30 cm)	N ₀ =0 N ₁ =130 N ₂ =170	shredded and integrated into the soil	irrigation ² (80% PET ³) rainfed	
	SUNFLOWER	ploughing (30 cm) minimum tillage (10 cm)	N ₀ =0 N ₁ =80 N ₂ =140	shredded and integrated into the soil	¹ only at ² drip irr	rigation;
	FABA BEAN ⁴	ploughing (30 cm) minimum tillage (10 cm)		shredded and integrated into the soil	4 only at	otential evapotraspiration t CIRAA ertigation
	TOMATO ¹	tillage	N ₀ =0 N ₁ =120 N ₂ =170	shredded and integrated into the soil	50% PET⁵ 100% PET⁵	INSTITUTE OF LIFE SCIENCES SCIENCES Sant'Anna

Foto 2. Strumentazione mobile [Centro di Collaudo di Terre Regionali Toscane - Cesa (AR)]

2 - Design & development of instrumentation

The "mobile" instrument: monitoring of spatial variation of N₂O emissions "tracked off-road vehicle with electric traction"

2 - Instrumentation design & development

Spatial variations monitoring

PTFE FILTER INTERNAL 0.20 µm PUMP Mass Flow Meter EXHAUST Sample IN INLET INLET WASTE LGR UGGA Analyzer LGR N2O analyzer PTFE FILTER 0.45 μm CH4, CO2, H2O LGR 913-0015 Sample OUT Accumulation Chamber

Accumulation chamber and collar

The measure

- IPNOA PROJEC

2 - Instrumentation design & development

Temporal variation of N₂O, CH₄ and CO₂ emissions employing a multi-chamber system

Irrigated

2 – Instrumentation design & development

Soil N₂O flux monitoring protocol

Discrete monitoring (mobile unit)

- Two years November 2013 October 2015
 - Every 15 days, 2 times a week after nitrogen fertilizations
- 4 replicates for each treatment
- \sim 20-30 dates per crop per year \rightarrow 6400 sampling points!

Long term monitoring (multi-chamber unit)

- 2 years on 6 parcels

Monitoring Parameters (Both surveys)

Quasi Real Time

 N₂O, CO₂, CH₄ flux , Soil temperature and soil moisture, meteorological variables;

In the lab

- Crop yield, Soil nitrate and ammonium, N uptake in different biomass fraction.

2 years monitoring - main results summary:

Best Management Practices (BMPs) for soil N₂O reduction as average of two sites and two years

Agricultural practices	BMPs	Mitigation potential	Effect on crop yield
Tillage	Ploughing → Minimum tillage	-60% fava bean, -25% sunflower*	+35% fava bean -2% sunflower
Nitrogen fertilization	-30% nitrogen rate	-30% on all the fertilized crops	-12% durum wheat and tomato -2/4% maize and sunflower
Irrigation	-50% irrigation volume	-30% tomato in fertigation*	-8% tomato

Wheat : Regional scale modeling

denitrification decomposition model

What will happen by: reducing N input from 170 to 110 kg ha⁻¹ :

SPECIFIC A.P. RECOMMENDED PRACTICE **EFFECTIVENESS ASPECT** Nitrogen fertilizer Calculate the rate according to the crop * * * rate needs. **NITROGEN FERTILIZATION** Fertilizer Apply the fertilizer near the plants and, placement if possible, buried. Distribution Apply the fertilizer when it is most * * needed by the crop. period $N_2O\ can potentially be mitigated with the use of slow-release fertilizers or$ **Fertilizer type** fertilizers with added nitrification ** inhibitors. Reduce the tillage depth in sandy or loamy soils. **Tillage techniques** Clay soils must be well drained to avoid compaction and stagnation.

REGIONE TOSCANA

INSTITUTE OF LIFE SCIENCES Scuola Superiore Sant'Anna

The Best Practices Manual

The Best Practices Manual

A.P.	SPECIFIC ASPECT	EFFECTIVENESS	RECOMMENDED PRACTICE	
ΑΤΙΟΝ	Water amount	**	Calculate the water amount in relation to the crop needs (water balance).	
IRRIGATION	Irrigation techniques	**	Use irrigation systems that ensure a good uniformity of water distribution and a good irrigation efficiency.	
MENT	Crop rotation	**	Involve in the rotation poliennial crops (forage crops) and crops with a low nitrogen requirement (leguminous).	
CROPS MANAGEMENT	Cover crops	*	Cultivate cover crops in the interval between two main crops.	
CROPS	Crop residues	**	Incorporate crop residues into the soil, avoiding deep tillage with leguminous residues.	
FIELD HYDRAULICS AND WATER MANAGEMET	Ensure the maintenance of the infrastructure controlling the field hydraulics	***	Maintain the effectiveness of infrastructure to ensure the water drainage	

REGIONE TOSCANA

Farmers Trade associations **Stakeholders Policy makers Italian Ministries** National and Regional agencies Local authorities, Research Institutions **Environmental Organizations**

> **Private Companies Schools**

and any individual that may be interested in relevant issues

Report for policy maker

ITHOA PROJECT

layman report

BESTMANAGEMENTPRACTICES

for the mitigation of nitrous oxide emissions

in agricultural systems

- Report for policy makers -

Workshops & meetings

Transposition by the policy makers

Action B7 : The contents of the best practices manual will be used as a technical input for the planning of regional activities in the Tuscany Region, in particular for the new rural development policy, the Rural Development Plan 2014-2020, and the legislation for the environmental impact of agriculture

REGIONE TOSCANA

Soil protection and maintenance of organic soil matter: *no-till seeding, cover*

The PSR (Rural Development Plan) supports the diffusion of organic farming and farming practices (proper management of nitrogen fertilizer and irrigation, reduction of soil processing, use of cover crops ...) that IPNOA highlight as capable of contributing to the reduction of greenhouse gas emissions

Measure 4 Productive and non-productive agriculture investments

 Precision farming equipments, no-till grain seeding technologies, water management and irrigation plants, surface water control works

Measure 1 Knowledge transfer and Informations actions

Measure 2, 16,....

The results of the project can be easily applied to other areas that present both pedo-climatic conditions and cropping systems similar to Tuscany.

The methods tested in this project can be replicated in areas with different soil and climatic conditions and/or that use different cropping systems by replicating the scheme that allowed IPNOA to identify a viable strategy:

Inventory of cropping systems at regional level and setup of trials

Monitoring of emissions of major crops under various conditions of irrigation, fertilization, tillage and crop management

Identification of good practices and regional-scale modeling of project results

Dissemination and adoption of the best practices

VITiculture Innovative Soil Organic Matter Management: variable-rate distribution system and monitoring of impacts 2016-19

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di Agraria

Development and demonstration of Variable-rate technology (VRT) for vineyard fertilization

casella

Implementation of the VRT in order to improve the organic fertilization distribution systems. Construction and testing of five prototypes adapted to 5 different pilot contexts, representatives of UE vineyard variability

Increase sustainability improving the vineyard soil management Improve the quality of vineyard soils in terms of soil structure, organic matter content and biodiversity, monitoring different environmental and socio-economic aspects.

VITiculture Innovative Soil Organic Matter Management: variable-rate distribution system and monitoring of impacts 2016-19

Monitoring GHGs soil emissions in order to compare the different soil management, using IPNOA WEST ^{2S}

ife

VI ISOM

Monitoring CO2 emissions at eco-system level with Eddy Covariance in Berlucchi and Bosco del Merlo Winery (Prof. Pitacco UNIPD)

BERLUCCHI Degli Azzoni

Marchine Agricele

Consorzie Italbiotec

AANEIACOR

Analysis of Biological Quality of soils (QBS-Ar) (Sata Studio Agronomico)

Chemical analysis of soils (Prof. Adani UNIMI)

Collection of data regarding both vine-productive parameters, grape musts quality and microvinifications (Prof Valenti UNIMI)

Improved Bus Prototypes for

BONOMI

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di Agraria

too a proper to all have been an

LIFE11 ENV/IT/302 – IPNOA was realized with the contribution of the financial instrument LIFE+ of European Union

INSTITUTE OF LIFE SCIENCES REGIONE TOSCANA

SCIENCE & IMPAC

Scuola Superiore Sant'Anna

